c^2+4C=16

Simple and best practice solution for c^2+4C=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c^2+4C=16 equation:



c^2+4=16
We move all terms to the left:
c^2+4-(16)=0
We add all the numbers together, and all the variables
c^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $

See similar equations:

| 10/24=x/96 | | -0,5x^2+1,5x-1=0 | | 2x+5=9(x+4/3) | | 3x-23=97 | | 3j=-3/2 | | -8y=3y^2+5 | | 2+10b=16-4b | | 20+16x^2=20 | | 16x^2-20x=13 | | 180=5y+(4y-9)+40 | | 6x^2+7-43x=0 | | 2x+6+5x-21+7x+-39=180 | | y/4+4=-12 | | X^3+5x^2+7x+2/x=2 | | (4x-6)=(2x+4) | | 3=(4^x)-10(3^x) | | 100-(20*a)=460 | | 3b=b+36 | | 4y-1/4=5 | | 0.75=n | | $0.75=n= | | 14+18x=35+11x | | 13x-4=11x-8 | | 10x+1.4=5.1 | | 2x+6x+5X-21+4x+1=180 | | 3(2n-3)=5(n+3) | | -3/5/0,12+x=1,8 | | (x+2)(2x-6)(x-3)=0 | | 2x+6x=5X-21=4x+1 | | 11x/15-9=x/5+23 | | 2•x+3=7 | | -6d=-5d–9 |

Equations solver categories